40 research outputs found

    Critical temperature and correlation length of an elastic interaction model for spin-crossover materials

    Full text link
    It has previously been pointed out that the coexistence of infinite-range and short-range interactions causes a system to have a phase transition of the mean-field universality class, in which the cluster size is finite even at the critical point. In the present paper, we study this property in a model of bistable molecules, whose size changes depending on the bistable states. The molecules can move in space, interacting via an elastic interaction. It is known that due to the different sizes, an effective long-range interaction between the spins appears, and thus this model has a mean-field type of phase transition. It is found that the scaling properties of the shift of the critical temperature from the pure short-range limit in the model with infinite-range and short-range interactions hold also in the present model, regarding the ratio of the size of the two states as a control parameter for the strength of the long-range interaction. By studying the structure factor, it is shown that the dependence of the cluster size at the critical temperature also shows the same scaling properties as a previously studied model with both infinite-range and short-range interactions. We therefore conclude that these scaling relations hold universally in hybrid models with both short-range and weak long-range interactions

    Spatiotemporal dynamics of the spin transition in [Fe(HB(tz)3_3)2_2] single crystals

    Get PDF
    The spatiotemporal dynamics of the spin transition have been thoroughly investigated in single crystals of the mononuclear spin-crossover (SCO) complex [Fe(HB(tz)3_3)2_2] (tz=1,2,4-triazol-1-yl) by optical microscopy. This compound exhibits an abrupt spin transition centered at 334 K with a narrow thermal hysteresis loop of ∌ 1 K (first-order transition). Most single crystals of this compound reveal exceptional resilience upon repeated switching (several hundred cycles), which allowed repeatable and quantitative measurements of the spatiotemporal dynamics of the nucleation and growth processes to be carried out. These experiments revealed remarkable properties of the thermally induced spin transition: high stability of the thermal hysteresis loop, unprecedented large velocities of the macroscopic low-spin/high-spin phase boundaries up to 500 ”m/s, and no visible dependency on the temperature scan rate. We have also studied the dynamics of the low-spin → high-spin transition induced by a local photothermal excitation generated by a spatially localized (Ø=2”m) continuous laser beam. Interesting phenomena have been evidenced both in quasistatic and dynamic conditions (e.g., threshold effects and long incubation periods, thermal activation of the phase boundary propagation, stabilization of the crystal in a stationary biphasic state, and thermal cutoff frequency). These measurements demonstrated the importance of thermal effects in the transition dynamics, and they enabled an accurate determination of the thermal properties of the SCO compound in the framework of a simple theoretical model

    Spatially Resolved Investigation and Control of the Bistability in Single Crystals of the [Fe(bbpya) (NCS)2] Spin Crossover Complex

    Get PDF
    The spin transition in single crystals of the [FeII(bbpya) (NCS)2] (bbpya = N,N-bis(2–2?-bipyrid-6-yl)amine) mononuclear complex was investigated by a combination of X-ray diffraction, Raman spectroscopy, as well as optical and atomic force microscopy (AFM) methods. These studies, performed around 440 K, revealed an extremely abrupt spin transition associated with a structural phase transition from a triclinic (low spin) to a monoclinic (mixed low spin/high spin) structure. Spatially resolved observations of this transition evidenced a clear phase separation associated with heterogeneous nucleation and the formation of a moving macroscopic interface whose velocity reached in some cases 300 ?m s–1. Using photothermal control it was possible to stabilize biphasic states of the crystal and then acquire AFM images of the phase boundary. A “sawtooth” like topography was repeatedly observed, which most likely emerges so as to minimize the elastic strain. Remarkably, a fine spatial control of the phase boundary could be also achieved using the AFM probe itself, through probe–sample convective heat exchange

    Complete Set of Elastic Moduli of a Spin-Crossover Solid: Spin-State Dependence and Mechanical Actuation

    Get PDF
    Molecular spin crossover complexes are promising candidates for mechanical actuation purposes. The relationships between their crystal structure and mechanical properties remain, however, not well understood. In this study, combining high pressure synchrotron Xray diffraction and nuclear inelastic scattering measurements, we assessed the effective macroscopic bulk modulus (11.5 ± 2.0 GPa), Young’s modulus (10.9 ± 1.0 GPa) and Poisson’s ratio (0.34 ± 0.04) of the spin crossover complex [FeII(HB(tz)3)2] (tz = 1,2,4-triazol-1-yl) in its low spin state. Crystal structure analysis revealed a pronounced anisotropy of the lattice compressibility, which was correlated with the difference in spacing between the molecules in different crystallographic directions. Switching the molecules from the low spin to the high spin state leads to a remarkable drop of the Young’s modulus to 7.1 ± 0.5 GPa, which was also assessed in thin film samples by means of micromechanical measurements. These results are in agreement with the high cooperativity of the spin crossover in this compound and highlight its application potential in terms of recoverable stress (21 ± 1 MPa) and work density (15 ± 6 mJ/cm3)

    Modélisation des processus à l'équilibre et hors équilibre de matériaux à transition de spin : application à la simulation des diagrammes de diffraction des rayons X

    No full text
    Modelisation of Equilibrium and non equilibrium processes experimentally observed in spin crossover compounds is essential for a better understanding of mechanisms of the transition existing in those bistable solids which are good candidates for future industrial applications in computing data storage. Measurements following the molecular spin state change (magnetic, optical...) have been successfully reproduced, using various models, in particular Ising-like models. However, structural phase changes, occurring during the spin state change and only accessible with X-ray or neutron diffraction experiments, can't be reproduced with Ising-like models. The aim of this work is to interpret both kinds of measures: magnetic and diffraction. We have also introduced a new microscopic spin model in which lattice degrees of freedom have been explicitly taken into account. This anharmonic model has been solved analytically in the one dimensional case and numerically in higher dimensions using Monte Carlo simulation of equilibrium and non equilibrium processes. This model retrieves most of results or Ising-like models and simulates lattice expansion or contraction during the spin transition. We have coupled this anharmonic model with a soft called DISCUS, in order to simulate diffraction experimental conditions and to calculate the intensity diffracted by the lattice. Diffraction patterns have been reproduced in the different cases (thermal transition, thermal relaxation, photoexcitation...) observed experimentally. Conditions for the observation of the coexistence of HS and LS Bragg peak are discussed and analyzed. The concept of "like spin domains" (LSD) is then defined more precisely by introducing the concept of "molecular like spin domains" (MLSD) and "structural like spin domains" (SLSD).La modĂ©lisation des processus Ă  l'Ă©quilibre et hors de l'Ă©quilibre observĂ©s expĂ©rimentalement dans les composĂ©s Ă  transition de spin est indispensable Ă  la comprĂ©hension des mĂ©canismes de transition existants chez ces matĂ©riaux bistables, trĂšs prometteurs pour de futures applications dans le stockage informatique. Les mesures suivant le changement d'Ă©tat molĂ©culaire (magnĂ©tiques, optiques) ont Ă©tĂ© reproduites avec succĂšs Ă  l'aide de diverses modĂšles, en particulier les modĂšles de type Ising. En revanche, le changement de phase structurale, observĂ© par diffraction des rayons X ou neutrons, accompagnant le changement d'Ă©tat de spin, ne peut ĂȘtre simulĂ© avec ces modĂšles. L'objectif de ce travail est de rĂ©concilier les deux types de mesures : magnĂ©tiques, optiques et la diffraction. Un nouveau modĂšle de spin a dĂ» ĂȘtre introduit, dans lequel sont pris en compte de maniĂšre explicite les variables de rĂ©seau. Le modĂšle a Ă©tĂ© Ă©tudiĂ© analytiquement dans le cas unidimensionnel et numĂ©riquement dans le cas bidimensionnel par simulation Monte Carlo des processus Ă  l'Ă©quilibre et hors Ă©quilibre. Le modĂšle retrouve d'une part les rĂ©sultats des modĂšles de type Ising et d'autre part la contraction ou la dilatation du rĂ©seau Ă  la transition de spin. Afin de comparer avec les mesures de diffraction, la mise en conditions expĂ©rimentales a Ă©tĂ© simulĂ©e Ă  l'aide du modĂšle anharmonique couplĂ© avec un programme (DISCUS) pour calculer l'intensitĂ© diffractĂ©e. Les clichĂ©s de diffraction ont Ă©tĂ© reproduits avec succĂšs dans les diffĂ©rents cas observĂ©s expĂ©rimentalement. Les conditions d'apparition de la coexistence des pics de Bragg HS et BS sont analysĂ©es. La notion de "domaines de spin" est alors complĂ©tĂ©e par l'introduction "des domaines de spin molĂ©culaires" (clusters de molĂ©cules) et "des domaines de spin structuraux"

    Modelisation of equilibrium and non-equilibrium processes in spin crossover compounds : application to X-ray diffraction pattern simulation

    No full text
    La modĂ©lisation des processus Ă  l'Ă©quilibre et hors de l'Ă©quilibre observĂ©s expĂ©rimentalement dans les composĂ©s Ă  transition de spin est indispensable Ă  la comprĂ©hension des mĂ©canismes de transition existants chez ces matĂ©riaux bistables, trĂšs prometteurs pour de futures applications dans le stockage informatique. Les mesures suivant le changement d'Ă©tat molĂ©culaire (magnĂ©tiques, optiques) ont Ă©tĂ© reproduites avec succĂšs Ă  l'aide de diverses modĂšles, en particulier les modĂšles de type Ising. En revanche, le changement de phase structurale, observĂ© par diffraction des rayons X ou neutrons, accompagnant le changement d'Ă©tat de spin, ne peut ĂȘtre simulĂ© avec ces modĂšles. L'objectif de ce travail est de rĂ©concilier les deux types de mesures : magnĂ©tiques, optiques et la diffraction. Un nouveau modĂšle de spin a dĂ» ĂȘtre introduit, dans lequel sont pris en compte de maniĂšre explicite les variables de rĂ©seau. Le modĂšle a Ă©tĂ© Ă©tudiĂ© analytiquement dans le cas unidimensionnel et numĂ©riquement dans le cas bidimensionnel par simulation Monte Carlo des processus Ă  l’équilibre et hors Ă©quilibre. Le modĂšle retrouve d’une part les rĂ©sultats des modĂšles de type Ising et d’autre part la contraction ou la dilatation du rĂ©seau Ă  la transition de spin. Afin de comparer avec les mesures de diffraction, la mise en conditions expĂ©rimentales a Ă©tĂ© simulĂ©e Ă  l'aide du modĂšle anharmonique couplĂ© avec un programme (DISCUS) pour calculer l'intensitĂ© diffractĂ©e. Les clichĂ©s de diffraction ont Ă©tĂ© reproduits avec succĂšs dans les diffĂ©rents cas observĂ©s expĂ©rimentalement. Les conditions d'apparition de la coexistence des pics de Bragg HS et BS sont analysĂ©es. La notion de "domaines de spin" est alors complĂ©tĂ©e par l'introduction "des domaines de spin molĂ©culaires" (clusters de molĂ©cules) et "des domaines de spin structuraux".Modelisation of Equilibrium and non equilibrium processes experimentally observed in spin crossover compounds is essential for a better understanding of mechanisms of the transition existing in those bistable solids which are good candidates for future industrial applications in computing data storage. Measurements following the molecular spin state change (magnetic, optical
) have been successfully reproduced, using various models, in particular Ising-like models. However, structural phase changes, occurring during the spin state change and only accessible with X-ray or neutron diffraction experiments, can’t be reproduce with Ising-like models. The aim of this work is to interpret both kinds of measures: magnetic and diffraction. We have also introduced a new microscopic spin model in which lattice degrees of freedom have been explicitly taken into account. This anharmonic model has been solved analytically in the one dimensional case and numerically in higher dimensions using Monte Carlo simulation of equilibrium and non equilibrium processes. This model retrieves most of results or Ising-like models and simulates lattice expansion or contraction during the spin transition. We have coupled this anharmonic model with a soft called DISCUS, in order to simulate diffraction experimental conditions and to calculate the intensity diffracted by the lattice. Diffraction patterns have been reproduced in the different cases (thermal transition, thermal relaxation, photoexcitation
) observed experimentally. Conditions for the observation of the coexistence of HS and LS Bragg peak are discussed and analyzed. The concept of “like spin domains” (LSD) is then defined more precisely by introducing the concept of “molecular like spin domains” (MLSD) and structural like spin domains” (SLSD)

    Elastic models, lattice dynamics and finite size effects in molecular spin crossover systems

    Get PDF
    International audienceThe experimental studies of spin-crossover compounds switched in the last decade from bulk measurements and macroscopic observations to the nanoscale and microscopic approaches. In this context, new and sometimes unexpected behaviours have been documented, which could be partially described only by the classical phenomenological models developed in the last period of the last century. In this context, the development of more complex models, able to reproduce the nucleation and domain propagation within the material, has proved to be not a whim of some theoreticians but a necessity, which facilitated the full understanding of observed phenomena and even made premises for further experiments. Here, we present and analyse various elastic models identifying their common points and differences and discuss how they can be used for the study of microscopic phenomena as the cluster formation, stability and propagation or for the study of finite size effects in spin-crossover nanoparticles, with open boundary conditions or embedded in various matrices

    Modélisation des processus à l'équilibre et hors équilibre de matériaux à transition de spin (application à la simulation des diagrammes de diffraction des rayons X)

    No full text
    La modĂ©lisation des processus Ă  l'Ă©quilibre et hors de l'Ă©quilibre observĂ©s expĂ©rimentalement dans les composĂ©s Ă  transition de spin est indispensable Ă  la comprĂ©hension des mĂ©canismes de transition existants chez ces matĂ©riaux bistables, trĂšs prometteurs pour de futures applications dans le stockage informatique. Les mesures suivant le changement d'Ă©tat molĂ©culaire (magnĂ©tiques, optiques) ont Ă©tĂ© reproduites avec succĂšs Ă  l'aide de diverses modĂšles, en particulier les modĂšles de type Ising. En revanche, le changement de phase structurale, observĂ© par diffraction des rayons X ou neutrons, accompagnant le changement d'Ă©tat de spin, ne peut ĂȘtre simulĂ© avec ces modĂšles. L'objectif de ce travail est de rĂ©concilier les deux types de mesures : magnĂ©tiques, optiques et la diffraction. Un nouveau modĂšle de spin a dĂ» ĂȘtre introduit, dans lequel sont pris en compte de maniĂšre explicite les variables de rĂ©seau. Le modĂšle a Ă©tĂ© Ă©tudiĂ© analytiquement dans le cas unidimensionnel et numĂ©riquement dans le cas bidimensionnel par simulation Monte Carlo des processus Ă  l Ă©quilibre et hors Ă©quilibre. Le modĂšle retrouve d une part les rĂ©sultats des modĂšles de type Ising et d autre part la contraction ou la dilatation du rĂ©seau Ă  la transition de spin. Afin de comparer avec les mesures de diffraction, la mise en conditions expĂ©rimentales a Ă©tĂ© simulĂ©e Ă  l'aide du modĂšle anharmonique couplĂ© avec un programme (DISCUS) pour calculer l'intensitĂ© diffractĂ©e. Les clichĂ©s de diffraction ont Ă©tĂ© reproduits avec succĂšs dans les diffĂ©rents cas observĂ©s expĂ©rimentalement. Les conditions d'apparition de la coexistence des pics de Bragg HS et BS sont analysĂ©es. La notion de "domaines de spin" est alors complĂ©tĂ©e par l'introduction "des domaines de spin molĂ©culaires" (clusters de molĂ©cules) et "des domaines de spin structuraux".Modelisation of Equilibrium and non equilibrium processes experimentally observed in spin crossover compounds is essential for a better understanding of mechanisms of the transition existing in those bistable solids which are good candidates for future industrial applications in computing data storage. Measurements following the molecular spin state change (magnetic, optical ) have been successfully reproduced, using various models, in particular Ising-like models. However, structural phase changes, occurring during the spin state change and only accessible with X-ray or neutron diffraction experiments, can t be reproduce with Ising-like models. The aim of this work is to interpret both kinds of measures: magnetic and diffraction. We have also introduced a new microscopic spin model in which lattice degrees of freedom have been explicitly taken into account. This anharmonic model has been solved analytically in the one dimensional case and numerically in higher dimensions using Monte Carlo simulation of equilibrium and non equilibrium processes. This model retrieves most of results or Ising-like models and simulates lattice expansion or contraction during the spin transition. We have coupled this anharmonic model with a soft called DISCUS, in order to simulate diffraction experimental conditions and to calculate the intensity diffracted by the lattice. Diffraction patterns have been reproduced in the different cases (thermal transition, thermal relaxation, photoexcitation ) observed experimentally. Conditions for the observation of the coexistence of HS and LS Bragg peak are discussed and analyzed. The concept of like spin domains (LSD) is then defined more precisely by introducing the concept of molecular like spin domains (MLSD) and structural like spin domains (SLSD).NANCY1-Bib. numĂ©rique (543959902) / SudocSudocFranceF

    Role of Surface Effects in the Vibrational Density of States and the Vibrational Entropy in Spin Crossover Nanomaterials: A Molecular Dynamics Investigation

    No full text
    International audienceSize reduction effects on the lattice dynamics of spin crossover (SCO) thin films have been investigated through molecular dynamics (MD) simulations of the density of vibrational states. The proposed simple model structure and reduced force field allows us to obtain good orders of magnitude of the sound velocity in both spin states and takes into account the contribution of free surfaces in the vibrational properties of very thin films (below a thickness of 12 nm). The slab method issue from the field of surface physico-chemistry has been employed to extract surface thermodynamic quantities. In combination with the related slab-adapted method, the slab approach provides a powerful numerical tool to separate surface contributions from finite-size effects. Due to the relatively low stiffness of SCO materials, the lattice dynamics seems to be governed by surface instead of confinement effects. The size evolution of thermodynamic quantities is successfully reproduced, especially the increase of the vibrational entropy with the size reduction, in good agreement with experimental observations
    corecore